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Abstract
The behaviour of metastable phases involved in phase transformations of a
simple fluid confined to a nanoscopic slit-pore is investigated within the mean-
field lattice-gas approximation. For small displacements δρi (where i labels
lattice sites) of local densities about their values ρ0

i at the (metastable) minima
of the grand potential functional �[ρ], the change in � is quadratic in δρi .
The ‘force constants’ associated with the δρi are the elements of the Hessian
evaluated at the minimum (i.e., (∂2�/∂ρi ∂ρj )0). If the walls of the pore are
homogeneous, the Hessian reduces, in reciprocal space, to a single nz × nz

matrix, where nz is the number of lattice planes parallel with the walls. The
complete phase diagram, including spinodals, is determined for nz = 3, in
which case the Hessian can be diagonalized explicitly. As the spinodal of
a given (metastable) phase is approached, a characteristic eigenvalue of the
Hessian tends to zero. The components of the corresponding eigenvector,
which are proportional to homogeneous density fluctuations in the lattice planes,
can indicate the nascent phase to which the metastable phase is transforming.
The new phase is not necessarily the globally stable one. This suggests that
sorption could take place via stepwise transformations involving phases that
are metastable on the timescale of the observation.

1 Present address: Department of Chemical Engineering, North Carolina State University, Raleigh, NC 27695-7905,
USA.
2 Permanent address: Department of Agronomy and Horticulture, University of Nebraska–Lincoln, Lincoln,
NE 68583-0915, USA.
3 Author to whom any correspondence should be addressed.

0953-8984/02/235673+25$30.00 © 2002 IOP Publishing Ltd Printed in the UK 5673

http://stacks.iop.org/cm/14/5673


5674 S H L Klapp et al

1. Introduction

First-order phase transitions normally take place via metastable states. A classic example is the
gas–liquid transition at a temperature below critical [1]. In order to observe condensation in a
very pure sample of a gas on a ‘reasonable’ timescale, one must typically raise the pressure of the
gas considerably above the value at which the gas is in thermodynamic equilibrium with liquid
at the given temperature. For the metastable gas to condense, clusters (i.e., microscopic regions
of liquid) of a ‘critical’ size must form. Visible droplets result from rapid growth of critical
clusters through a succession of collisions with single molecules in the surrounding metastable
gas. The rate of droplet formation is thus controlled by the population of critical clusters,
which increases markedly with the degree of supersaturation of the metastable gas. Other
classic examples of phase transformations involving metastable states come readily to mind:
boiling of superheated liquid, crystallization of a pure supercooled liquid, and precipitation of a
dissolved solid from a supersaturated solution. In all cases, the course of the transition consists
in the creation and subsequent growth of nuclei of the new (stable) phase in the presence of
the existing metastable phase. The rate of appearance of the new phase is determined by the
steady population of clusters of critical size [2–4].

Over the past few years we have been studying phase equilibria of ‘simple’ fluids confined
to slit-pores with chemically heterogeneous walls [5–9]. Walls possessing quite simple
patterns (i.e., weakly and strongly adsorbing stripes that alternate periodically in one transverse
direction) can give rise to confined phases having surprisingly diverse morphologies: droplets,
vesicles, liquid bridges in addition to the ‘normal’ gas and liquid phases. We have also
examined the role played by nanoscopic liquid bridges in static friction [10]. Metastable
states involving these and similar new morphologically distinct phases could be responsible
for hysteresis observed in experiments on sorption [11] and friction [12]. The kinetics of phase
transformations in which new morphologies participate is consequently of great interest to us.
Any such transitions presumably proceed by formation and growth of critical clusters of the new
(stable) phase in the presence of the metastable one. In contrast to nucleation in homogeneous
phases, however, one must now account for heterogeneity of the confined phase [13–17].
From a theoretical viewpoint this is a daunting prospect. Before possible mechanisms of
cluster formation can be treated, however, one needs to know the complete phase diagram of
the system, including not only lines of coexistence but also limits of existence of metastable
phases, i.e. the spinodals.

One of the purposes of this article is to present such a complete phase diagram for the slit-
pore with chemically homogeneous walls, which is obviously a special case of chemically
heterogeneous walls. A numerical procedure for determination of the equilibrium phase
diagram has been developed and applied within the context of the nearest-neighbour lattice-
gas model [18], which yields a satisfactory semiquantitative description [8]. In the present
work we focus on a new approach to locating the spinodals. The previously developed
numerical technique yields the minima of the grand potential functional �[ρ] of the local
density ρ = {ρ1, ρ2, . . . , ρN } on the N sites of the lattice. For any given thermodynamic
state (specified by the chemical potential µ, absolute temperature T , and such additional
model parameters as the (discrete) distance nz between the walls and the details of the
chemical pattern which govern the interaction between fluid molecules and the walls), in
the vicinity of a first-order phase transition �[ρ] exhibits several minima, the lowest of which
corresponds to the globally stable state. Other minima refer to metastable states. To locate
the spinodals we expand � up to second order in displacements δρ of the local density about
the density ρ0 at the (metastable) minimum. This yields a quadratic expression for the change
δ� = �[ρ] − �[ρ0] in the grand potential functional due to displacements in the N possible
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‘directions’ in ρ-space. The Hessian matrix elements Hij ≡ (∂2�/∂ρi ∂ρj )0 evaluated at the
minimum correspond to effective ‘force constants’ associated with the displacements. The
N normal modes and corresponding eigenvalues {λi, i = 1, 2, . . . , N } can be obtained, in
principle, by diagonalizing the Hessian. The eigenvalue λi is the force constant associated
with the ith normal mode, which consists of a concerted displacement of all N components
of ρ. As the state of the system approaches a spinodal, the eigenvalue λd associated with a
‘dominant’ mode becomes small, indicating that the mode becomes soft (i.e., the restoring
force becomes small). At the spinodal λd = 0, the minimum becomes a saddle point and
the state becomes unstable. The dominant normal mode can provide information about the
direction of the phase transformation in ρ-space.

In section 2 we describe the model system and determination of its phase diagram.
Section 3.1 is devoted to an outline of the general approach to location of spinodal lines.
This would seem to require diagonalization of an N × N matrix, which is clearly out of the
question for large N . However, in section 3.2 we show how translational symmetry in planes
parallel with the walls (in the case of chemically homogeneous walls) can be exploited to
reduce greatly the dimension of the Hessian. This is achieved by representing the Hessian in
reciprocal space by means of a discrete Fourier transform. In reciprocal space the Hessian
assumes block-diagonal form: a set of real, symmetric nz × nz matrices H̃(k), each one
corresponding to a particular value of the reciprocal vector k. Section 3.3 deals with the
special situation of principal interest to us, namely that only nearest neighbours interact. In
this case, H̃(k) can be decomposed into a k-independent matrix H̃′ and the identity matrix
multiplied by a scalar function of k. As a consequence, only a single diagonalization of H̃′ is
required to obtain all the eigenvalues and eigenvectors. In section 3.4 we present an analysis
of the density–density response function, deriving in closed form its asymptotic dependence
on the distance between lattice sites.

Section 4 is devoted to a detailed analysis of the homogeneous slit-pore within the
nearest-neighbour mean-field lattice-gas approximation. The (reduced) thermodynamic state
parameters comprise µ/εff , kBT/εff (kB Boltzmann’s constant), nz, and εfw/εff , where εff

and εfw are the respective magnitudes of the fluid–fluid and fluid–wall attraction. Complete
phase diagrams are determined for a narrow pore (nz = 3) with strongly attractive walls
(εfw/εff = 1.9). The eigenvalues and eigenvectors of H̃ are obtained explicitly in terms of T

and ρ0(µ, T ). The behaviour of the eigenmodes as µ approaches the spinodals is scrutinized
for several particularly interesting temperatures. The components of the dominant eigenvector
can indicate the ‘new’ phase toward which the metastable one is tending as the state of the
system approaches the spinodal.

2. Lattice-gas model of slit-pore

We begin by considering a quite general lattice model for a simple fluid confined between two
plane-parallel walls that are chemically patterned so that the (equilibrium) system is periodic
in both transverse directions (i.e., x- and y-directions). The positions of fluid molecules are
constrained to the sites of an nx ×ny ×nz (=M ×M ×nz) simple-cubic lattice. For simplicity
we take the period to be the same in the x- and y-directions. The coordinates of a lattice site
are specified by the triplet of integers (mx, my, mz). The lattice constant is set equal to the
effective molecular diameter σ . Distance is then implicitly given in units of σ . The hard cores
of the molecules are reflected in the restriction on the occupancy of any site to one molecule
at most. For convenience, we take M to be even and the coordinates of lattice sites to run
from m = −M/2 to M/2 in the x- and y-directions. Periodic boundary conditions are applied
on the planes mx = ±M/2 and my = ±M/2. The z-coordinate runs from mz = 1 on the
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‘contact’ layer of sites at the lower wall to mz = nz on the contact layer at the upper wall.
The interaction of a molecule at site i (mx, my, mz) with the ‘external’ field of the walls is
represented by �i . The potential energy of the lattice gas can therefore be expressed as

U(s) = 1
2

N∑
i=1

N∑
j �=i

ua(i, j)sisj +
N∑

i=1

�isi (2.1)

where N = M2nz, the total number of sites, and s = (s1, s2, . . . , sN ) denotes the instantaneous
configuration (i.e., the ordered set of occupation numbers) such that

si =
{

0, empty site

1, occupied site.
(2.2)

In (2.1), ua(i, j) is the potential energy of attraction between molecules occupying sites i

and j . In general, ua(i, j) depends only on the distance between the sites.
The grand potential � is given by

� = −β−1 ln 
 (2.3)

in terms of the grand partition function [19]


 =
∑

s

exp

{
−β

[
1
2

N∑
i=1

N∑
j �=i

ua(i, j)sisj +
N∑

i=1

µisi

]}
(2.4)

where the sum on s is over all 2N allowed states. The local chemical potential µi is defined
by

µi ≡ �i − µ (2.5)

and β ≡ (kBT )−1.
Application of the Bogoliubov variational theorem [20, 21] yields the following relation

for the grand potential in the mean-field approximation:

� � �[ρ] = Fid + Fex +
N∑

i=1

µiρi (2.6)

where Fid and Fex, respectively, the ‘ideal’ and ‘excess’ contributions to the Helmholtz free
energy, are defined as

Fid ≡ β−1
N∑

i=1

[ρi ln ρi + (1 − ρi) ln(1 − ρi)]

Fex ≡ 1
2

N∑
i=1

N∑
j �=i

ua(i, j)ρiρj .

(2.7)

In (2.6), �[ρ] stands for the grand potential functional of the a priori unknown mean local
densities ρi ≡ 〈si〉. The best estimate of � and of the density (vector) ρ = (ρ1, ρ2, . . . , ρN ) is
determined by minimizing �[ρ], since, according to (2.6), �[ρ] is an upper bound of �. The
necessary condition for �[ρ] to be a minimum is(

∂�[ρ]

∂ρi

)
0

= 0 i = 1, 2, . . . , N (2.8)

where the subscript 0 denotes that the partial derivatives are evaluated at ρ0. Using the defining
expression for �[ρ] in (2.6) and (2.7), we obtain from (2.8)

−β

(
∂Fex

∂ρi

)
0

= ln

(
ρ0

i

1 − ρ0
i

)
+ βµi. (2.9)
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This form of the condition for the minimum is convenient for the analysis carried out in
section 3.4. Now using the definition of Fex in (2.7) we can recast (2.9) as

β−1 ln
ρ0

i

1 − ρ0
i

+
N∑

j �=i

ua(i, j)ρ0
j + µi = 0 i = 1, 2, . . . , N . (2.10)

Formally solving (2.10) yields, of course, all extrema of �[ρ]. However, the particular
iterative procedure that we adopt here, which is detailed in an earlier publication [8], gives only
the minima. The lowest minimum corresponds to the thermodynamically stable state, which
is the one appearing in an equilibrium phase diagram. Other minima correspond to metastable
states, such as the ones discussed in section 1 (e.g., the supersaturated gas) and via which
transitions to the stable state occur through nucleation. It is the analysis of the metastable
states that is the central concern of this article.

3. Theory

3.1. Stability limits

In order to investigate the stability of a given minimum ρ0 in the grand potential functional,
we examine the ‘cost’ in free energy of small displacements in density δρi = ρi −ρ0

i about ρ0.
To this end we expand �[ρ] in a Taylor series about ρ0:

�[ρ] � �[ρ0] +
N∑

i=1

(
∂�

∂ρi

)
0

(ρi − ρ0
i ) +

1

2

N∑
i=1

N∑
j=1

(
∂2�

∂ρi ∂ρj

)
0

(ρi − ρ0
i )(ρj − ρ0

j ) + · · ·

(3.1)

ignoring contributions of degree higher than the second. Since �[ρ0] is a minimum, (∂�/∂ρi)0

vanishes. Thus, (3.1) can be recast compactly as

δ�[δρ] ≡ �[ρ] − �[ρ0] = 1
2 δρT · H · δρ (3.2)

where H is the (N × N ) Hessian matrix with elements Hij = (∂2�/∂ρi ∂ρj )0; δρ is the
N -dimensional column vector whose elements are δρi = ρi − ρ0

i and δρT is its transpose.
From (2.6) and (2.7) we deduce

Hij =
(

∂2Fid

∂ρi ∂ρj

)
0

+

(
∂2Fex

∂ρi ∂ρj

)
0

= β−1δij

ρ0
i (1 − ρ0

i )
+ ua(i, j) (3.3)

where δij is the Kronecker symbol.
Because ua(i, j) depends only on the distance vector between sites i and j , ua(i, j) =

ua(j, i). Since ρ0
i and ua are also real, it follows from (3.3) that Hij = Hji = H ∗

ji , where the
asterisk stands for the complex conjugate. Therefore, H is Hermitian and consequently can be
diagonalized by a unitary transformation. That is,

UT · H · U = Λ (3.4)

where Λ is a diagonal matrix with elements λl (l = 1, 2, . . . , N ). Defining the column vector
of the normal displacement modes by

δQ = UT · δρ (3.5)

we can rewrite (3.2) as

δ� = 1
2δQT · Λ · δQ = 1

2

N∑
l=1

λl δq
2
l (3.6)
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where ql is the lth normal mode given in terms of the original displacements by

δql =
N∑

j=1

ujl δρj . (3.7)

In (3.7), ujl is the j th component of the eigenvector ul of H, which is the lth column vector of
U and the eigenvalue λl is the effective ‘force constant’ associated with the mode.

Since the λs depend on ρ0, they are implicit functions of the thermodynamic state variables
µ and T and also of the model parameters (i.e., nz, εfw, εff ). As long as ρ0 minimizes �[ρ],
all λs are positive and any displacement δρ is countered by a ‘restoring force’. Note that this
latter statement holds for both local minima and for the global minimum. In other words,
knowledge of the λs alone is insufficient to indicate whether the state corresponding to ρ0 is
(globally) stable, or merely metastable. As the state approaches a spinodal, however, a certain
‘dominant’ eigenvalue, say λd, begins to decrease markedly, indicating that displacements in
the dominant normal mode are opposed by a sharply reduced restoring force. As the spinodal
is reached, λd vanishes; the minimum turns into a saddle point and the restoring force vanishes.
The metastable state has reached its limit of stability.

Although the above analysis provides well-defined criteria for stability, it does not address
the physical interpretation of the dominant or ‘soft’ modes. From a mathematical viewpoint,
the dominant mode indicates the directions in ρ-space in which �[ρ] flattens most rapidly as the
spinodal is approached. One might therefore expect the dominant mode to give some indication
of the morphology of the phase beyond the spinodal. Indeed similar stability analyses within
the context of homogeneous binary fluids [22, 23] and polar fluids [24] have shown that the
dominant mode can be a reliable indicator of the nature of the ‘new’ phase. This experience
also suggests a further interpretation of the dominant mode, namely that its direction in ρ-space
may indicate the pathway from the metastable to the new stable phase.

In general, however, one appears to face the discouraging prospect of having to examine
the dependence of all N eigenvalues of H on the thermodynamic state. However, if the system
possesses symmetries beyond those implied in the general description of the model given
in section 2, then it is possible to exploit these symmetries by expressing the Hessian in an
alternative (reciprocal-space) representation where it becomes block-diagonal. In the next
section we demonstrate how to carry out this simplification for the special case of a slit-pore
with chemically homogeneous walls.

3.2. The slit-pore with homogeneous walls

In the case where the walls are smooth on an infinitesimal scale, �i depends only on the
distance of site i from either wall. Then, for the solutions ρ0 of (2.10) that minimize �[ρ],
ρ0 is constant in planes parallel with the walls. That is, the densities ρ0

i on all M2 lattice
sites in a given plane z = mz (mz = 1, 2, . . . , nz) are equal. Thus, equation (2.10) involves
only nz a priori unknown densities. If the lattice sites are labelled explicitly by the dual index
i ≡ (R, mz), where the two-dimensional vector R ≡ (mx, my), then (3.2) becomes

δ� = 1
2

∑
R

∑
mz

∑
R′

∑
m′

z

δρ(R, mz) H(R, mz; R′, m′
z) δρ(R′, m′

z) (3.8)

where the subscripts are now indicated in parentheses to ease the notational burden. Because of
the in-plane symmetry pointed out above, every lattice site in a given plane z = mz is equivalent.
The Hessian matrix elements therefore depend only on the vector difference R−R′ rather than
on both R and R′ separately. This can be seen more clearly by recasting Hij given in (3.3) in
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the dual-index notation as

H(R, mz; R′, m′
z) = β−1δR,R′δmz,m′

z

ρ0
mz

(1 − ρ0
mz

)
+ ua(R − R′, mz − m′

z) (3.9)

where we have used that the pair potential depends only on the distance vector between sites
i = (R, mz) and j = (R′, m′

z). We can exploit the equivalence of sites within a given plane
to reduce drastically the effort of finding the normal displacement modes. This simplification
is effected by introducing the discrete Fourier transform (see appendix A).

We can therefore represent the Hessian in terms of the two-dimensional basis vectors
(see (A.6)) as

H(R, mz; R′, m′
z) =

∑
k

H̃ (k, mz, m
′
z)�k(R − R′). (3.10)

Likewise we can express the displacements of the local density as

δρ(R, mz) =
∑
k′

δρ̃(k′, mz) �k′(R). (3.11)

Note that H̃ and δρ̃ stand for ‘partial’ transforms, still depending on the indices mz and m′
z

of the two lattice planes involved. After substituting into (3.8) the expressions given in (3.10)
and (3.11), and simplifying the result, we arrive at

δ� = 1
2

∑
k

∑
mz

∑
m′

z

δρ̃∗(k, mz) MH̃(k, mz, m
′
z) δρ̃(k, m′

z). (3.12)

From (3.9) we obtain for the Hessian in reciprocal space

MH̃(k, mz, m
′
z) = β−1δmz,m′

z

ρ0
mz

(1 − ρ0
mz

)
+ Mũa(k, mz − m′

z) (3.13)

using the relation given in (A.9). The Fourier component of the pair potential ũa is specified
in section 3.3.

We now observe that since different reciprocal vectors k are not coupled in δ�, we can
recast (3.12) as

δ� =
∑

k

δ�k (3.14)

where

δ�k = 1
2δρ̃†

(k) · MH̃(k) · δρ̃(k). (3.15)

In (3.15) we used the compact notation introduced in section 3.1, the dagger denotes the
Hermitian adjoint, and the elements of H̃(k) are H̃ (k, mz, m

′
z) (see (3.13)). The sum on k

in (3.14) runs over the M2 blocks, where the contribution of each block is given by (3.15). In
other words, in reciprocal space the original M2nz ×M2nz Hessian H(R, mz; R′, m′

z) reduces
to block-diagonal form, where the M2 blocks are labelled by k and each block has dimensions
nz × nz. Because the lattice is centrosymmetric it follows that H̃ is real and symmetric and
can therefore be brought to diagonal form by a unitary transformation in the same fashion as
detailed in section 3.1. The result is

δ�k = 1
2

nz∑
l=1

λl(k)|ql(k)|2 (3.16)

where now the eigenvalues λl(k) and the corresponding normal modes

ql(k) =
nz∑

mz=1

umzl δρ̃(k, mz) (3.17)
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depend on k as well as on the thermodynamic state variables and model parameters implicitly.
Note that because of the argument presented in section 3.1, the state corresponding to
{ρ0

mz
, mz = 1, 2, . . . , nz} is thermodynamically stable or metastable as long as λl(k) > 0

for all l and k.

3.3. Nearest-neighbour interactions

In the special case of principal concern to us, where only nearest-neighbour interactions are
taken into account, the pair potential in real space takes the form

ua(R − R′, mz − m′
z) = −εff [δmz,m′

z
δR−R′,d‖ + δR,R′(δmz−m′

z,1 + δmz−m′
z,−1)] (3.18)

where −εff is the potential energy of attraction between neighbouring molecules and d‖ is a
vector from reference site R to one of its nearest neighbours in the x–y plane. Using (A.6),
(A.9), and (A.10) we obtain for the pair potential in reciprocal space

Mũa(k, mz, m
′
z) = −εff

[
δmz,m′

z

∑
d‖

exp

(
−2π ik · d‖

M

)
+ δmz−m′

z,1 + δmz−m′
z,−1

]
. (3.19)

The sum in (3.19) is over the unit vectors (êx, 0), (êy, 0), (−êx, 0), (−êy, 0). Combining (3.13)
and (3.19), we arrive at the following explicit form for the reciprocal-space Hessian:

MH̃(k, mz, m
′
z) = β−1δmz,m′

z

ρ0
mz

(1 − ρ0
mz

)
− 2εff

[
cos

(
2πkx

M

)
+ cos

(
2πky

M

)]
δmz,m′

z

− εff [δmz,m′
z−1 + δmz,m′

z+1]. (3.20)

Noting that the k-dependence of MH̃ appears only on the diagonal and that the dependence
is identical for all elements, we can rewrite (3.20) as

MH̃ = MH̃′ + �(k)1 (3.21)

where 1 is the identity matrix, the elements of MH̃′:

MH̃ ′(mz, m
′
z) ≡ β−1δmz,m′

z

ρ0
mz

(1 − ρ0
mz

)
− εff [δmz,m′

z−1 + δmz,m′
z+1] (3.22)

are independent of k, and the scalar function �(k) is defined by

�(k) ≡ −2εff

[
cos

(
2πkx

M

)
+ cos

(
2πky

M

)]
. (3.23)

It follows immediately from (3.21) that MH̃ is diagonalized by the same unitary transformation
as diagonalizes MH̃′. In other words, the two matrices have the same eigenvectors.
Furthermore, the eigenvalues of MH̃ are given by

λl(k) = λ′
l + �(k) (3.24)

where λ′
l is the lth eigenvalue of MH̃′.

The task of determining the eigenvalues of MH̃(k) therefore reduces to that of
diagonalizing the single nz ×nz tridiagonal Hermitian matrix MH̃′. The latter does not depend
on k; its eigenvalues and eigenvectors are functions only of the thermodynamic state variables
and the model parameters. Note also from the functional form of �(k) given in (3.23) that
the eigenvalues of MH̃ assume their lowest numerical values at k = 0, regardless of l. We
therefore expect the harbinger of the spinodal to be a k = 0 normal mode and restrict our
attention primarily to the long-wavelength limit henceforth.
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3.4. Correlations in the local density

Added insight into mechanistic aspects of the transition may be achieved by studying the
behaviour of density fluctuations as the spinodal is approached. Along the ‘quasistatic
trajectory’ of the metastable minimum, equation (2.9) holds. That is, everywhere along the
trajectory we solve (2.9) to obtain the local density ρ0 as a function of µ and T . We can also
regard µ, or µi , as a function of ρ0 and differentiate both sides of (2.9) with respect to ρ0

j along
the trajectory to obtain

−β

(
∂2Fex

∂ρi ∂ρj

)
0

= δij

ρ0
i (1 − ρ0

i )
+ β

(
∂µi

∂ρj

)
0

= −βua(i, j) (3.25)

where the far right side of (3.25) follows from (2.7). By direct differentiation of the formally
exact expression for the grand potential � given in (2.3), we also obtain(

∂�

∂µi

)
= 〈si〉 (3.26)(

∂2�

∂µi ∂µj

)
= β[〈si〉〈sj 〉 − 〈sisj 〉] (3.27)

where the angular brackets signify the grand ensemble average.
We now define the density–density response function

Gij ≡ −β−1

(
∂2�

∂µi ∂µj

)
0

= 〈sisj 〉 − 〈si〉〈sj 〉 = 〈δsi δsj 〉 = −β−1

(
∂ρi

∂µj

)
0

(3.28)

where δsi ≡ si −〈si〉 and the right-hand side follows from (3.27). To arrive at the third member
of the equality we have set 〈si〉 = ρ0

i in (3.26). Now substituting expressions for (∂µi/∂ρk)0

and (∂ρk/∂µj )0, respectively given in (3.25) and (3.28), into the identity∑
k

(
∂µi

∂ρk

)
0

(
∂ρk

∂µj

)
0

= δij (3.29)

we obtain

βH · G = 1 (3.30)

where H is the real-space Hessian and G is the matrix of density–density correlation functions.
Equation (3.30) is the lattice-gas analogue of the Ornstein–Zernike equation of liquid-state
theory [25,26], which provides, in principle, an exact relation between density correlations and
the Hessian. In particular, the interaction contribution to H (i.e., (∂2Fex/∂ρi ∂ρj )0, see (3.25))
is just the so-called ‘direct correlation function’, which, in the mean-field approximation,
reduces to the intermolecular potential.

In section 3.2 we demonstrated explicitly that on account of the symmetry of the slit-pore
with homogeneous walls the (R, mz; R′, m′

z) element of H depends on R and R′ only through
the difference vector R−R′. The same argument applies to the elements of G. Therefore, we
can write the following expression for G in analogy to (3.10):

G(R′′, m′′
z ; R′, m′

z) =
∑
k′

G̃(k′, m′′
z , m

′
z)�k′(R′′ − R′). (3.31)

Substituting into (3.30) the expressions for G and H respectively given in (3.31) and (3.10),
we obtain∑

k

{∑
m′′

z

MH̃ (k, mz, m
′′
z )MG̃(k, m′′

z , m
′
z) − β−1δmzm′

z

}
�k(R − R′) = 0 (3.32)
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which follows from the definition of �k(R) given in (A.1). We then conclude on the basis
of the orthogonality relations (A.2) and (A.3) that the coefficient of �k(R − R′) in brackets
in (3.32) must vanish. We thus arrive at the reciprocal-space representation of the real-space
relation (3.30):

MH̃(k) · MG̃(k) = β−11 (3.33)

in which all matrices have dimensions nz × nz. It follows directly from (3.33) that

G̃(k) = 1

βM
[MH̃(k)]−1. (3.34)

Moreover, it follows from (3.34) that G̃ is diagonalized by the same unitary transformation
as diagonalizes MH̃. To demonstrate this we perform the same unitary transformation on (3.34)
as diagonalizes H̃. The result is

E = UT · G̃(k) · U = β−1M−1Λ−1 (3.35)

where Λ is the diagonal matrix containing the eigenvalues of MH̃. Equation (3.35) implies
that E is diagonal as well. The diagonal elements of E and Λ are therefore related by

ηl(k) = 1

βMλl(k)
l = 1, 2, . . . , nz (3.36)

where λl(k) is the eigenvalue of MH̃ associated with the lth normal displacement mode.
Moreover, it follows from (3.35) that the eigenvalues of G̃ can be expressed as

ηl(k) = (E)ll = (UT · G̃ · U)ll =
∑
mz

∑
m′

z

umzlum′
zl
G̃(k, mz, m

′
z) (3.37)

where the umzl are components of the eigenvectors ul of MH̃. From (3.37) it is clear that since
adjacent planes are coupled in MH̃, the eigenvalues ηl(k) of G̃ are not, as would appear to
be the case, true in-plane (2D) correlation functions. Rather they describe the mean squared
density fluctuations both within and ‘between’ planes of the lattice. The contributions of the
various layers to ηl(k) are given by the eigenvectors of MH̃, which are also eigenvectors of G̃.

We now envisage the system approaching an instability (i.e., some eigenvalue of the
Hessian is going to zero). From (3.36) it is immediately clear that the vanishing force constant
implies a divergence of the related mean squared density fluctuations in reciprocal space.
Furthermore, we already know that only the k = 0 mode can become dominant (see the
discussion below (3.24)). Therefore, the divergence of the fluctuations also occurs at k = 0.
This implies that the density correlations in real space (i.e., the functions G(R, mz; R′, m′

z)

which are the inverse Fourier transforms of G̃(k, mz, m
′
z)) are becoming long range; that is, the

so-called correlation length is diverging. In the following we wish to describe this phenomenon
more explicitly by relating the long-range behaviour (i.e., the asymptotic behaviour as R → ∞)
of the real-space density correlations G(R, mz; R′, m′

z) to the eigenvalues λl at k = 0. Our
approach essentially follows the common Ornstein–Zernike theory of dominant fluctuations,
as described in many textbooks in the context of liquid-state theory [27,28]. The present case
is more complicated than the one usually considered, namely true two- or three-dimensional
systems, where only one length scale is involved. The reason is that our system consists of
several layers, and the fluctuations in and between the layers are coupled. Therefore, the
long-range behaviour of the functions G(R, mz; R′, m′

z) is coupled as well.
We start by expressing the G̃(k, mz, m

′
z) (i.e., the Fourier transform of the quantities that

we are interested in) in terms of ηl(k), which are just the inverse eigenvalues λl(k). Using (3.35)
and (3.36) we find

G̃(k, mz, m
′
z) = (U · E · UT)mz,m′

z
=

nz∑
l=1

umzlum′
zl
ηl(k). (3.38)
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We now make use of the fact that, within the present approximations, the components umzl of
the eigenvectors do not themselves depend on k. As a result, the Fourier back-transform of
G̃(k, mz, m

′
z) can be written simply as

G(R, mz; R′, m′
z) =

∑
k

G̃(k, mz, m
′
z)�k(R − R′) =

nz∑
l=1

umzlum′
zl
ηl(R − R′) (3.39)

where the far right side follows from (3.38) and

ηl(R − R′) =
∑

k

ηl(k)�k(R − R′). (3.40)

Equation (3.39) implies that the asymptotic behaviour of G(R, mz; R′, m′
z) is determined only

by that of the functions ηl(R−R′) which can be computed from (3.40) combined with (3.36).
To evaluate the inverse transform (3.40), we first note that, because of the functional form

of �k(R) (see (A.1)), the summation over the indices kx and ky can be replaced by a summation
over transformed indices κx ≡ 2πkx/M and κy ≡ 2πky/M . Equation (3.40) then becomes

ηl(R) = 1

M

∑
κ

ηl(κ) exp(iκ · R) (3.41)

where κ = (κx, κy). (In (3.41) we have temporarily set R − R′ equal to R to simplify the
notation.) In the limit of an infinite system (M → ∞) the distance �κ = 2π/M between
neighbouring points in reciprocal space becomes infinitesimally small. Therefore, the double
sum in (3.41) can be replaced by the double integral

ηl(R) = 1

M(�κ)2

∫ π

−π

dκx

∫ π

−π

dκy ηl(κ) exp(iκ · R)

= 1

β(2π)2

∫ π

−π

dκx

∫ π

−π

dκy λ−1
l (κ) exp(iκ · R) (3.42)

where we have used (3.36) to obtain the last line.
We now expand λl(κ) around κ = 0. This is justified as long as we are interested only in

the long-range behaviour of ηl(R). From (3.23) and (3.24) we obtain

λl(κ) � λ′
l − 4εff + κ · κ + O(κ4) � λl(0) + κ2 (3.43)

where λl(0) ≡ λl(κ = 0). We note in passing that, as a result of the mean-field approximation,
the prefactor of κ2 (1) in (3.43) is independent of the thermodynamic state. Furthermore, since
the expanded λl(κ) involves only the magnitude of κ, the real-space correlation ηl depends
only on R = |R|. Substituting this expression for λl(κ) in (3.42) and transforming to polar
coordinates, we obtain

ηl(R) � 1

4π2β

∫ 2π

0
dϕ

∫ κ(ϕ)

0
dκ

κ exp(iκR cos ϕ)

λl(0) + κ2
(3.44)

where the dependence of the upper limit of the κ-integration on ϕ results from the square
boundary in the original Cartesian space (see (3.42)). This integral has already been dealt with
in the context of the critical behaviour of truly two-dimensional systems [28, 29].

Assuming that λl(0) is positive we find (see appendix B) in the asymptotic (large-R) limit

ηl(R) � 1

2β
√

2π

√
ξl

R
exp(−R/ξl) R → ∞ (3.45)

where the ‘correlation length’ ξl ≡ 1/
√

λl(0). Equation (3.45) shows that correlations ηl(R)

decay exponentially and that the correlation length diverges as λl(0) → 0. Note, however,
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that (3.45) is strictly valid only for λl(0) > 0. Directly at λl(0) = 0, the integral in (3.44)
results in (unphysical) logarithmic behaviour of ηl(R) [29].

Finally, combining (3.45) and (3.39), we find that the asymptotic behaviour of the
correlation functions G(R, mz; R′, m′

z) is given as a sum of exponentials:

G(R, mz; R′, m′
z) �

nz∑
l=1

umzlum′
zl

1

2β
√

2π

√
ξl

|R − R′| exp(−|R − R′|/ξl). (3.46)

This shows that even an in-plane correlation function G(R, mz; R′, m′
z = mz) is governed by

several correlation lengths.

4. Results

4.1. State-independent properties of displacement modes

As an illustration of the application of the formalism developed in section 3 we consider
the special case of the slit-pore with homogeneous walls. We invoke the nearest-neighbour
approximation and take the ‘external’ field due to the walls to act only on fluid molecules in
the ‘contact’ layers:

�i = −εfw(δmz,1 + δmz,nz
) (4.1)

where εfw is the depth of the fluid–wall attraction. Henceforth we adopt the customary
dimensionless units: distance in units of the lattice constant σ , energy in units of εff , and
temperature in units of εff/kB. The thermodynamic state is then specified by independent state
variables µ, T , nz, and εfw.

On account of the mirror symmetry about the mid-plane, the number of a priori unknown
densities {ρ0

i } which satisfy (2.10) is nz/2 if nz is even, or (nz + 1)/2 if nz is odd. We
now specialize our considerations even further to the simple, yet nevertheless nontrivial, case
nz = 3, which involves only the two a priori unknown densities ρ0

1 = ρ0
3 and ρ0

2 . These must
satisfy (2.10), which can be written as

T ln

(
ρ0

1

1 − ρ0
1

)
− 4ρ0

1 − ρ0
2 + µ1 = 0 T ln

(
ρ0

2

1 − ρ0
2

)
− 4ρ0

2 − 2ρ0
1 + µ2 = 0. (4.2)

In (4.2), µ1 = −εfw − µ, µ2 = −µ, and we have already imposed the requirement of mirror
symmetry.

In reciprocal space the k-independent part of the Hessian for nz = 3 assumes the form
(see (3.21) (3.22))

MH̃′ = MH̃ − �(k)1 =
(

α −1 0
−1 β −1
0 −1 α

)
(4.3)

where �(k) is given by (3.23) and

α ≡ T

ρ0
1 (1 − ρ0

1 )
β ≡ T

ρ0
2 (1 − ρ0

2 )
. (4.4)

The eigenvalues λ′
l and eigenvectors ul of MH̃′ can be obtained in closed form and are listed in

table 1. The eigenvalues of the complete Hessian MH̃ are then given in terms of λ′
l by (3.24).

The eigenvectors of MH̃ coincide with those of MH̃′.
Scrutiny of table 1 reveals that the eigenvalues λ′

l are ordered independently of the
thermodynamic state and of the parameter εfw. To see this we first note that, according to
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Table 1. Eigenvalues and components ul,mz of the (unnormalized) eigenvectors of the matrix
MH̃′ for nz = 3; α = T/ρ0

1 (1 − ρ0
1 ), β = T/ρ0

2 (1 − ρ0
2 ).

l λ′
l (u1l; u2l; u3l )

1 1
2 {(α + β) − [(α − β)2 + 8]1/2} (1, 1

2 {(α − β) + [(α − β)2 + 8]1/2}, 1)

2 α (1, 0, −1)

3 1
2 {(α + β) + [(α − β)2 + 8]1/2} (1, 1

2 {(α − β) − [(α − β)2 + 8]1/2}, 1)

their definitions given in (4.4), α and β are positive and finite quantities, since 0 < ρ0
i < 1 for

T > 0. Furthermore, [(α − β)2 + 8]1/2 > |α − β|, which implies the inequalities

λ′
1 < 1

2 [(α + β) − |α − β|] λ′
3 > 1

2 [(α + β) + |α − β|]. (4.5)

If, on one hand, β � α, we deduce from (4.5) that λ′
1 < β and λ′

3 > α. If, on the other hand,
β > α, equation (4.5) implies that λ′

1 < α, λ′
3 > β. Combining these results with the fact that

λ′
2 = α (see table 1), we arrive at the following extended inequality:

λ′
1 < λ′

2 < λ′
3, (4.6)

which is valid for all possible values of α and β. Moreover, using the relation (3.24) between
the eigenvalues λ′

l and those of the full Hessian, λl(k), we find that the latter are ordered as
well:

λ1(k) < λ2(k) < λ3(k) ∀ k. (4.7)

Relation (4.7) implies that the cost in free energy associated with the normal displacement
modes increases in the order 1 → 2 → 3. In other words, mode 1 is always the ‘softest’
mode.

To understand the physical significance of the three modes, we consider the components
of the eigenvectors (see table 1), since the umzl represents the amplitude of displacement in
local density from its equilibrium value in lattice plane mz. Following the same reasoning as
led to (4.6), we find that the mid-plane component (mz = 2) of u1 is always positive, whereas
that of u3 is always negative. The latter implies that in mode 3, the density displacement in the
mid-plane is opposite to that in the contact planes. In other words, mode 3 is symmetric with
two nodes, and according to (4.7) we conclude that a fluctuation of this type exhibits the largest
restoring force. From table 1 we find that mode 2 is antisymmetric with one node—that is,
density displacements in the contact planes are in opposite directions to each other—whereas
that in the mid-plane vanishes. Finally, mode 1 is symmetric without any nodes. Thus, the
‘softest’ mode in the three-layer system (see (4.7)) is characterized by density displacements
which are in the same direction in all three lattice planes. The value of component u21 relative
to u11 = u31 = 1 (see table 1) then indicates the weight of the fluctuations in the mid-plane
relative to those in the contact planes.

4.2. Numerical results

Employing the iterative procedure utilized in an earlier article [8], we solved (4.2) for εfw = 1.9
and T = 0.9. To discuss the results it seems pedagogically most sensible to begin with the
sorption isotherm, which is directly measurable in parallel sorption experiments. In figure 1
the average pore density

ρ̄ = 1

nz

nz∑
i=1

ρ0
mz

= 2ρ0
1 + ρ0

2

3
(4.8)
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Figure 1. Average pore density ρ̄ versus µ for nz = 3, εfw = 1.9, and T = 0.9 for stable and
metastable phases determined by solving (4.2). Labelled points are explained in the text.

is plotted as a function of µ. Three different branches between points 1 and a, d and b,
and c and 4 are clearly discernible, where gas (g), monolayer (m), and liquid (l) phases may
form. The gas corresponds to ρ0

1 (=ρ0
3 ) and ρ0

2 both being relatively small, whereas the liquid
corresponds to ρ0

1 and ρ0
2 being relatively large. The monolayer is characterized by relatively

large ρ0
1 but small ρ0

2 .
Suppose we perform a gedanken experiment in which we start from a state represented

by the point 1 in figure 1 and increase µ monotonically until we reach the end point 4 on the
isotherm. We then decrease µ until we arrive once again at the state point 1. The two hysteresis
loops in figure 1 indicate that the ‘path’ traversed by the system in ρ̄–µ space depends on the
direction (i.e., increasing or decreasing µ) of the experiment. In order to identify stable and
metastable states, we monitor the grand potential functional density

ω[ρ0] = �[ρ0]

M2nz

(4.9)

(see (2.6)) evaluated at its minimum characterized by the density (vector) ρ0. In figure 2,
ω[ρ0] is plotted as a function of µ for all minima, i.e. for all three phases found at T = 0.9.
The branches and the labelled points in figure 2 correspond to those in figure 1. Note that in
the presence of several minima at fixed µ (and T ), the globally stable phase is that with the
smallest ω; other minima correspond to metastable phases. Also, minima with the same value
of ω represent coexisting phases.

At small chemical potentials, for instance at point 1 in figure 2, ω has only a single
minimum at ρ0

g corresponding to the globally stable gas phase. When µ just barely exceeds
the value associated with point d, then a second minimum at ρ0

m appears, which represents the
monolayer phase. The minimum at ρ0

m is shallower than the one at ρ0
g and characterized by a

higher value of ω; that is, ω[ρ0
m] > ω[ρ0

g]. Depending on the magnitude of (ω[ρ0
m] − ω[ρ0

g]),
sooner or later a density fluctuation may arise that carries the system from the deeper to the
shallower minimum, where it may reside for a while until another fluctuation brings it back to
ρ0

g. Thus, given infinite time, on average the system spends more time in the state characterized
by ρ0

g than in the less stable one specified by ρ0
m.

This situation changes if the chemical potential exceeds the value µ
gm
x � −3.95 where

ω[ρ0
g] = ω[ρ0

m] (see point 2 in figures 1 and 2), and the monolayer coexists with gas. If µ



Phase transformations and metastability 5687

-0.6

-0.4

-0.2

-4.0 -3.9 -3.8

1
2

3

d

c
a

b

4

Figure 2. Grand potential density functional ω[ρ0] versus µ for nz = 3, εfw = 1.9, and T = 0.9
for minima determined by solving (4.2); g, m, and l correspond to gas, monolayer, and liquid
morphologies described in the text; labelled points are explained in the text.

exceeds µ
gm
x infinitesimally, the monolayer becomes globally stable. The behaviour of the

experimental system now depends on the timescale allowed for equilibration. If, on the one
hand, the experiment were carried out over an infinitely long time, the monolayer would
eventually appear. This transformation is associated with a discontinuous change in the
mean pore density indicated in figure 1 by the dotted line connecting points 2. If, on the
other hand, the time allowed for equilibration is insufficient (as may be the case in typical
sorption experiments), the system may persist in the (now metastable) gas phase. Only at
µ corresponding to point a in figures 1 and 2 does the metastable gas phase reach its limit
of stability—that is, its spinodal. In our experiment the gas phase, if it survives to point a,
now spontaneously disappears to yield the monolayer corresponding to a state point in the one-
phase monolayer region of the equilibrium phase diagram. The magnitude of the corresponding
discontinuity in the average pore density ρ̄ can be read off directly from the plot in figure 1.

Further information about the behaviour of the system as the spinodal is approached is
displayed in figure 3. There we plot the densities in the separate planes ρ0

mz
, the eigenvalues

of MH̃(k) at k = 0, and the mid-plane component u21 of the ‘softest’ normal mode, u1, over
the whole range of existence of the gas phase (i.e. the branch between points 1 and a). On
the scale of the plot in figure 3, λ1(0) and λ2(0) appear to coincide, but the inset shows that
λ1(0) < λ2(0), in agreement with (4.7). Moreover, only λ1(0) goes to zero as the spinodal is
reached. Note that u21  1, which indicates that the major displacements in the softest mode
occur in the ‘contact’ planes (mz = 1, 3). This is consistent with the plot of the ρ0

mz
, which

shows that the discontinuity in local density at the spinodal is much greater in the contact
planes than in the mid-plane (mz = 2).

Now as µ continues to increase from point a, the system remains in the monolayer phase
at least to point 3. Here, ω[ρ0

m] = ω[ρ0
l ] (see figure 2), which implies that for µ infinitesimally

larger than µml
x (i.e., the chemical potential at point 3 in figure 1), a truly equilibrated system

changes from monolayer to the (now globally stable) liquid phase (the associated discontinuity
in ρ̄ is indicated in figure 1 by the dotted line connecting points 3). However, in the typical
finite-time experiment, it is most likely that the monolayer persists as a metastable state until
µ considerably exceeds µml

x . Only at the monolayer’s spinodal (point b in figures 1 and 2)
must the monolayer undergo a transformation into a thermodynamically stable liquid phase.
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Figure 3. Local densities ρ0
mz

, eigenvalues λl(0) of the reciprocal-space Hessian at k = 0, and
mid-plane component of the dominant mode versus µ over the range of existence of the gas for
nz = 3, εfw = 1.9, and T = 0.9.

The approach to the monolayer’s stability limit is quantified in figure 4, where we see
that λ1(0) goes to zero and that u21 � 1. The latter implies that the mid-plane component
of the dominant mode greatly exceeds those of the contact planes, which is consistent with
the observation that the shift in local density is greatest in the mid-plane (see the top plot in
figure 4). Finally, as µ increases from point b, the liquid phase remains stable up to the end
point 4 (see figures 1 and 2).

We now consider the phase behaviour of the system as we reverse the ‘direction’ of
the experiment by gradually lowering µ from point 4, where ω has only a single minimum
corresponding to the stable liquid phase. If thermodynamic equilibrium were attained at all
values of µ (which means, in principle, waiting for an infinite time), the path followed by the
system in the sorption diagram (see figure 1) would clearly be 4 → 3 → 2 → 1. However,
since the experiment is conducted over a finite period, the system may not achieve equilibrium
at all values of µ. This gives rise to the hysteresis loops in figure 1. For example, as µ drops
below the value corresponding to point 3 (i.e., the point of liquid–monolayer coexistence), the
system may remain in the now metastable liquid phase until its limit of stability is reached at
point c. Similarly, as µ decreases below the value corresponding to point c, the monolayer
phase, which is globally stable down to µ

gm
x (point 2), may persist as a metastable phase

until point d is reached. The precise behaviour of the system as the spinodal points c and
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Figure 4. As figure 3, but for the monolayer phase.

d are approached ‘from above’ is quantified in figures 4 and 5, respectively. In both cases,
the approach to the spinodal is signalled by the vanishing of λ1(0). Furthermore, u21 � 1
when the system changes from liquid to monolayer (see figure 5), whereas u21  1 for the
final change from monolayer to gas (see figure 4). These observations are consistent with the
behaviour of the local densities (see the top plots in figures 4 and 5, showing that the largest
jump in local density occurs in the mid-plane at spinodal c and in the contact planes at spinodal
d). We conclude that the eigenvector corresponding to the dominant vanishing eigenvalue
indicates the physical nature of the incipient phase.

Repeating the above gedanken experiment at other temperatures permits us to plot the
complete phase diagram of the three-layer system (εfw = 1.9) in both ρ̄–T and µ–T

representations in figures 6(a) and (b), respectively. The solid lines connect points of two-
phase coexistence; the dotted lines represent the stability limits of gas, monolayer, and liquid
phases over the temperature range where these phases may become thermodynamically stable.
(Therefore, spinodals referring to the monolayer terminate at the triple-point temperature.) In
order to understand the sorption ‘path’ discussed above in the ρ̄–T diagram (see figure 6(a)),
consider again the temperature T = 0.9. As µ increases from point 1 a state is reached in which
the gas coexists with the monolayer (point 2). However, the gas may remain metastable for µ

corresponding to states between the points 2 and a. At point a the gas becomes unstable and
transforms into a monolayer. Note that the average density of the monolayer is higher than at



5690 S H L Klapp et al

-3.90 -3.85 -3.80 -3.75

1.0

0.8

0.6

0.4

0.2

0.0

0

5

15

0

5

10

15

10

-0.2

0.6

0.0

-3.925 -3.900

Figure 5. As figure 3, but for the liquid phase.

coexistence with the gas (see point 2, figure 1). As µ increases beyond point 3, the monolayer
may not undergo a phase transition to the coexisting liquid, but may remain metastable until
the next spinodal is reached (point b). At point b the monolayer becomes unstable and a liquid
phase forms. Its density is intermediate between the one at monolayer–liquid coexistence
(point 3) and that of the stable liquid (see point 4, figure 1). Similar considerations apply
if we start at state point 4 and decrease µ continuously. Note that upon adsorption (i.e., as
µ increases in the direction 1 → 4), spinodals on which points d and c are located have no
physical significance. Likewise spinodals on which points b and a reside are irrelevant upon
desorption (path 4 → 1).

It is furthermore instructive to consider the phase diagram in the alternative µ–T

representation in figure 6(b). Again, the dotted lines containing points a and b (c and d) are
the spinodals that the (metastable) state of the system can reach upon adsorption (desorption).
It can be verified that the µ–T diagram is consistent with our discussion of the sorption paths
(see figure 1). For instance, figure 6(b) shows that the chemical potential (and the temperature)
corresponding to point a, at which the (metastable) gas becomes unstable for T = 0.9 (see
figure 1), belongs to the one-phase region of the monolayer. This implies, in accord with the
preceding discussion, that the metastable gas transforms into a globally stable monolayer for
µ beyond gas–monolayer coexistence (point 2).

Moreover, the µ–T diagram shows directly that the destiny of the metastable gas upon
adsorption changes at lower temperatures. Consider, for example, the isotherm T = 0.8, for
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Figure 6. Phase diagrams for the model slit-pore with chemically homogeneous walls in T –ρ (a)
and µ–T (b) representations, for nz = 3 and εfw = 1.9. The isotherms are explained in the text.

which µ at the spinodal of the (metastable) gas phase (point a′) now exceeds µ at monolayer–
liquid coexistence (in contrast to the situation for T = 0.9). In other words, a′ does not
belong to the one-phase region of thermodynamically stable monolayer phases, while on the
other hand, µ at point a′ is still lower than µ where the (metastable) monolayer reaches its
limit of stability (point b′). For an adsorption experiment this implies that the metastable gas
again transforms into a monolayer (as at T = 0.9), but now this monolayer is metastable.
As µ increases from a′, the metastable monolayer eventually transforms (at point b′) into
(globally) stable liquid. The various states appearing along this path can also be seen from the
corresponding sorption isotherm plotted in figure 7(a).

At T = 0.8, an inspection of u21 versus µ for the metastable gas indicates that u21  1 at
the spinodal (point a′), similar to the case for the corresponding plot for T = 0.9 in the bottom
panel of figure 3. Likewise, u21 � 1 at the monolayer’s spinodal (point b′). At the spinodals
c′ and d′ on the reverse path, where metastable liquid transforms to metastable monolayer
and metastable monolayer to stable gas, respectively, u21 � 1 and u21  1. Therefore, the
amplitude of the mid-plane component of the dominant (softest) mode does indeed indicate
reliably the nascent phase. However, that the newly formed monolayer is merely metastable
can be determined only from a knowledge of the complete phase diagram.
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Figure 7. As figure 1, but for T = 0.80 (a) and T = 0.71 (b).

Yet another qualitative change in the fate of the metastable gas occurs at even lower
temperatures, in the vicinity of the intersection of the spinodals in the µ–T representation
(see figure 6(b)). As an example we consider T = 0.71, which is slightly above the triple-
point temperature Ttr � 0.703. It can be seen that µ at point a′′, at which the gas becomes
unstable, is now larger than µ at the monolayer’s spinodal (point b′′). Thus, as µ increases
from a value below b′′, the metastable gas transforms directly into a (globally) stable liquid
(see also figure 7(b)). In other words, the monolayer does not participate at all in the phase
transformation at T = 0.71.

At T = 0.71, an inspection of u21 versus µ reveals that u21  1 at the spinodal (point a′′)
of the metastable gas. This suggests that the incipient phase is the metastable monolayer. How-
ever, we know that µ at point a′′ exceeds µ at the stability limit (point b′′) of the monolayer. It is
clear, therefore, that the inference based on the dominant eigenvector is misleading in this case.
Additional numerical studies show that the dependence of ρ0

mz
on µ over the range of existence

of the metastable gas, as indicated in the top panel of figure 3, does not change as strongly
with temperature for T > Ttr . Thus, we expect the inequality u21  1 to hold over this range.
That is, we expect the dominant eigenvector to signal correctly the monolayer (either stable or
metastable) as the destination of the metastable gas over the range of the latter’s existence, at
least above the temperature where the stability-limit lines (a and b) intersect (see figure 6(b)).
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5. Summary and conclusions

In the present paper we investigate the role of metastable states involved in first-order phase
transformations of a fluid confined to a nanoscopic slit-pore. Following previous investiga-
tions [9] we model the system as a lattice gas with nearest-neighbour interactions. Thermody-
namic properties are calculated within the grand canonical ensemble, where temperature (T ),
chemical potential (µ), and the distance (nz) between the walls are controlled variables. The
best estimate for the grand potential � is obtained by minimizing the grand potential functional
�[ρ] of the local densities ρ = {ρi, i = 1, . . . , N }, where N is the number of lattice sites.
The mean-field approximation is used to evaluate the interaction contribution to �[ρ].

A central goal of our work is to develop a formalism for determining the limits of existence
of the various metastable states of the confined system (i.e. the so-called ‘spinodals’). The
starting point is the idea that in a stable or metastable state (i.e., at a minimum of the grand
potential functional �[ρ]), small displacements of the local densities from their values ρ0

i at
the minimum lead to an increase δ� in �. We estimate this ‘cost’ δ� by expanding the density
functional up to second order in the displacements δρi = ρi − ρ0

i . This yields a quadratic
expression in δρi for δ�, where the associated expansion coefficients are elements of the
Hessian matrix Hij = (∂2�/∂ρi ∂ρj )0. The matrix H comprises an entropic contribution,
given explicitly in terms of T and the densities ρ0

i , as well as an interaction contribution
which generally takes the form of a state-dependent direct correlation function. In the mean-
field approximation, however, the direct correlation function is just the (state-independent)
pair potential, in which case knowledge of the densities alone is sufficient for calculating the
Hessian. Stability of a given state requires that all eigenvalues of the N × N Hessian matrix
be positive. The eigenvalues can be interpreted as ‘force constants’ measuring the resistance
of the system to certain collective density displacements, the direction of which (in density
space) is determined by the eigenvectors of the Hessian. As a metastable state approaches its
stability limit (i.e., a spinodal), certain eigenvalues go to zero, indicating that the corresponding
normal modes are ‘softening’. The direction of the soft modes in density space can provide
information about the character of the phase beyond the spinodal.

The stability criteria outlined in section 3.1 are general in the sense that they apply to any
(confined) lattice gas with arbitrarily complex walls, and also for any approximation to the
interaction contribution to �[ρ]. However, direct diagonalization of the real-space Hessian
matrix is out of question for large N . Indeed, the method is practicable only if the equilibrium
states of the system possess spatial symmetries, for example full translational symmetry in
planes parallel with the walls (as for a system with chemically homogeneous walls). In
section 3.2 we show how to exploit this symmetry by means of a two-dimensional discrete
Fourier transform. Thereby, δ� decouples into independent contributions from different
discrete wavevectors k, and the stability criteria can be formulated in terms of the k-dependent
eigenvalues of the nz × nz reciprocal-space Hessian H̃(k). The problem of determining the
eigenvalues of the original N × N matrix H thus reduces to that of diagonalizing relatively
small matrices.

As demonstrated in section 3.3, additional decouplings in H̃(k) arise from the mean-
field approximation, combined with the nearest-neighbour restriction on the pair potential.
Incorporating these assumptions, we show that the eigenvalues can go to zero only in the long-
wavelength limit (i.e. at k = 0). This implies that collective density fluctuations against which
the system becomes unstable at the spinodals are homogeneous within the lattice planes.

A further implication of vanishing k = 0 eigenvalues is discussed in section 3.4, where
we derive (in principle) exact relations between the eigenvalues and eigenvectors of H̃(k) and
the matrix G̃(k) containing density–density correlations within and between the lattice planes.
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Expanding the eigenvalues around k = 0 enables us to examine the long-range behaviour of
the corresponding real-space correlations. Within the present approximations and under the
assumption that the system is still (meta)stable, the asymptotic behaviour of the correlation
functions can be cast in a closed form, namely as a sum of exponentials exp(−R/ξl)/

√
R,

where the nz-correlation lengths ξl are essentially the inverse eigenvalues of H̃(k) at k = 0.
Consequently, a decrease of a certain eigenvalue yields an increasing correlation length, which
is precisely what one expects in the vicinity of a phase transition. From a more technical
viewpoint, it is interesting that the above exponential decay in the correlations of a confined,
but still fully three-dimensional, fluid agrees with the Ornstein–Zernike result for a correlation
function in a true two-dimensional system [28].

Finally in section 4 we illustrate our approach by considering a confined system with
homogeneous walls and nz = 3, for which the Hessian can be diagonalized analytically. For
an appropriately chosen fluid–wall interaction, the equilibrium µ–T phase diagram reveals the
existence of three morphologically distinct stable phases above a triple temperatureTtr . Regions
where these states are only metastable overlap and the relative locations of spinodals and phase
coexistence lines vary with temperature. Focusing on three particularly interesting isothermal
paths, we perform an analysis of the nz = 3 eigenvalues and eigenvectors characterizing
the (meta)stable states. In addition, we delineate the µ-dependence of sorption isotherms,
which are directly measurable in parallel sorption experiments. The sorption isotherms
exhibit relatively wide hysteresis loops, indicating ‘pathways’ that the system may take in
an experiment performed on a finite timescale. The ‘new’ phase to which a metastable
phase decays upon approaching its spinodal does not always coincide with the globally stable
state. Under certain conditions the transformation between two globally stable phases involves
another intermediate metastable phase. The lifetime of such a metastable phase could be quite
long compared to the equilibration time available in a finite-time laboratory experiment. Thus,
the relative stability of, and reproducibility of occurrence of such a metastable phase may lead
the experimenter to believe that the newly formed phase is a globally stable one. From this
we conclude that there is a real worry about the significance of experimentally determined
phase diagrams of fluids in porous media, even in cases where the pore geometry is relatively
simple. Furthermore, close to Ttr , the stable phase appearing at intermediate µ can actually be
pre-empted by driving the low-µ state to its spinodal.

With the exception of the last phenomenon, which is specific to the vicinity of the triple
point, the ‘destiny’ of the metastable states is well reflected by the character of the soft modes
(i.e., the dominant fluctuations) close to the spinodal. In other words, the eigenvector associated
with the vanishing eigenvalue has the ‘right direction’ in the sense that the diverging density
fluctuations already have the character of the new phase beyond the spinodal. Therefore,
the dominant eigenmodes appear to be a reliable indicator of the new phase to which the
metastable phase decays. In the light of this experience we expect the stability analysis to
work also for other fluid–wall interaction strengths, or for thicker systems (i.e. larger nz),
where the diagonalization of H can only be carried out numerically.

The analysis of metastable states presented here could also be a useful tool for investigating
the phase behaviour of more complex systems with less spatial symmetry (compared to the full
in-plane symmetry for the case of homogeneous walls). An example would be a fluid confined
by chemically ‘striped’ walls, the equilibrium states of which [8,9] are symmetric with respect
to one of the two spatial directions parallel to the walls. In the context of a stability analysis,
this remaining symmetry could be exploited by means of a one-dimensional discrete Fourier
transform. This would give rise to an (M × nz) × (M × nz) matrix H̃(k), where M is the
period of the stripes. Although the matrix is larger than the smooth-wall one, it is nevertheless
substantially smaller than the original real-space H.
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Appendix A. Discrete Fourier transform

Let f (R) be specified on the M2 sites of a square lattice and let the sites be labelled from
mα = −M/2 + 1 to M/2 (α = x, y), where for convenience M is taken to be even. We define
a complete, orthonormal set of basis vectors �k(R) that span the M2 sites:

�k(R) ≡ 1

M
exp

(
2π ik · R

M

)
− M

2
< kx, ky � M

2
(A.1)

where i ≡ √−1 and the ‘<’ for the first part of the inequality signifies that kα � −M/2 + 1.
In (A.1), R and k represent vectors with integer components R = (mx, my) and k = (kx, ky).
It may be shown that [30]∑

R

�∗
k(R)�k′(R) = δk,k′ (A.2)

∑
k

�∗
k(R)�k(R

′) = δR,R′ (A.3)

where the superscript ‘∗’ denotes the complex conjugate. Since the �k span the M2 lattice
sites, any function f (R) given on those sites can be expressed as a linear combination of the
{�k}:

f (R) =
∑

k

f̃ (k)�k(R). (A.4)

The coefficients f̃ (k) can be determined by multiplying (A.4) by �∗
k′(R), summing on R, and

invoking the relation in (A.2). The result is

f̃ (k) =
∑
R

f (R)�∗
k(R). (A.5)

Together f (R) and f̃ (k) constitute the discrete Fourier transform pair: f is the representation
of the function in real (R) space; f̃ is its representation in reciprocal (k) space.

Note that we may ‘partially’ transform a function defined on a 3D cubic lattice to 2D
reciprocal space. Thus, consider a function f (R, mz) on the 3D lattice. We expand f in the
2D basis vectors as

f (R, mz) =
∑

k

f̃ (k, mz)�k(R) (A.6)

where the argument mz reminds us that f̃ implicitly depends on the z-coordinate of the lattice
plane. Following the reasoning that leads from (A.4) to (A.5), we arrive at

f̃ (k, mz) =
∑
R

f (R, mz)�
∗
k(R). (A.7)
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Taking f (R, mz) to be real, we have from (A.7)

f̃ ∗(k, mz) =
∑
R

f (R, mz)�k(R) = f̃ (−k, mz) (A.8)

where the third branch of the equality follows from (A.1).
It follows from (A.5) that δR,R′ is represented in reciprocal space by

δ̃R,R′(k) =
∑

R−R′
δR,R′�∗

k(R − R′) = �∗
k(0) = 1

M
. (A.9)

By similar reasoning, we can derive the relation

δ̃R−R′,d̂‖(k) = 1

M
exp

(
−2π ik · d̂‖

M

)
. (A.10)

Appendix B. Asymptotic analysis of (3.44)

The purpose of this appendix is to evaluate the integral in (3.44) approximately in closed form
and to examine its asymptotic dependence on R. We assume that λl(0) > 0.

Making the substitution

x = κR (B.1)

we can rewrite (3.44) as

ηl(R) = 1

4π2β

∫ 2π

0
dϕ

∫ Rκ(ϕ)

0
dx

x exp(ix cos ϕ)

λl(0)R2 + x2
. (B.2)

We now suppose that R becomes sufficiently large that the upper limit of the κ-integral
in (B.2) can be taken to infinity without incurring significant error. Using that the real
(imaginary) part of the integrand is even (odd) in the interval [0, 2π ] and the identity∫ π

0 dϕ cos(x cos ϕ) = πJ0(x) [31], where J0(x) is the zeroth-order Bessel function, we can
perform the ϕ-integration in (B.2) to obtain

ηl(R) = 1

2πβ

∫ ∞

0
dx

xJ0(x)

λl(0)R2 + x2
. (B.3)

The remaining definite integral in (B.3) is given by Gradshteyn and Ryzhik [32] as

ηl(R) = 1

2πβ
K0(R/ξl) (B.4)

where we defined the ‘correlation length’

ξl ≡ 1√
λl(0)

(B.5)

and K0(z) is the Bessel function of imaginary argument, which is given in terms of the zero-
order Hankel function of the first kind H

(1)
0 by [33]

K0(z) = π i

2
H

(1)
0 (iz). (B.6)

The asymptotic dependence of H
(1)
0 (z), where z is complex, is given by Abramowitz and

Stegun [34] as

lim
z→∞ H

(1)
0 (z) ∼

√
2

πz
exp

[
i

(
z − π

4

)]
− π < arg z < 2π. (B.7)
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In the present case, the argument of K0, z = R/ξl , is real, so, combining (B.6) and (B.7), we
find

lim
R→∞

K0(R/ξl) = π i

2

√
2ξl

π iR
exp

[
i

(
iR

ξl

− π

4

)]
=

√
πξl

2R
exp(−R/ξl) (B.8)

where we used that exp(−iπ/4) = 1/
√

i. Combining (B.4) and (B.8) we finally obtain the
result (3.45).
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